Expected Duration: 10/1/2019 – 9/30/2022.
Project Personal: PI: Yongfeng Zhang, Rutgers University (http://yongfeng.me/), co-PI: Chirag Shah, University of Washington (https://ischool.uw.edu/people/faculty/profile/chirags)
Key Outcomes:
[1] Zuohui Fu, Yikun Xian, Ruoyuan Gao, Jieyu Zhao, Qiaoying Huang, Yingqiang Ge, Shuyuan Xu, Shijie Geng, Chirag Shah, Yongfeng Zhang and Gerard de Melo. “Fairness-aware Explainable Recommendation over Knowledge Graphs”. ACM SIGIR 2020.
[2] Yikun Xian, Zuohui Fu, Handong Zhao, Yingqiang Ge, Xu Chen, Qiaoying Huang, Shijie Geng, Zhou Qin, Gerard de Melo, S. Muthukrishnan, Yongfeng Zhang. “CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Recommendation”. ACM CIKM 2020.
[3] Lei Li, Yongfeng Zhang, Li Chen. “Generate Neural Template Explanations for Recommendation”. ACM CIKM 2020.
[4] Yongfeng Zhang, Xu Chen, Yi Zhang, Min Zhang, Chirag Shah. “EARS 2020: The 3rd International Workshop on ExplainAble Recommendation and Search”. ACM SIGIR 2020.
[5] Yongfeng Zhang and Xu Chen. “Explainable Recommendation: A Survey and New Perspectives”. Foundations and Trends in Information Retrieval: Vol. 14: No. 1, pp 1-101.
[6] Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao, Min Zhang and Yongfeng Zhang. “Neural Logic Reasoning”. CIKM 2020.
[7] Hanxiong Chen, Shaoyun Shi, Yunqi Li and Yongfeng Zhang. “Neural Collaborative Reasoning”. WWW 2021.
[8] Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge and Yongfeng Zhang. “User-oriented Fairness in Recommendation”. WWW 2021.
[10] Zelong Li, Jianchao Ji, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Chong Chen and Yongfeng Zhang. “Efficient Knowledge Graph Embedding without Negative Sampling”. WWW 2021.
[11] Yaxin Zhu, Yikun Xian, Zuohui Fu, Gerard de Melo and Yongfeng Zhang. “Faithfully Explainable Recommendation via Neural Logic Reasoning”. NAACL 2021.
[12] Yongfeng Zhang, Min Zhang, Hanxiong Chen, Xu Chen, Xianjie Chen, Chuang Gan, Tong Sun, Xin Luna Dong. “The 1st International Workshop on Machine Reasoning: International Machine Reasoning Conference (MRC 2021)”. WSDM 2021.
Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant No. (IIS-1910154).
Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.